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Is a position-dependent stiffness relevant for the wetting phase diagram?

F. Clarysse and C. J. Boulter
Department of Mathematics, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom

~Received 8 October 2001; published 27 February 2002!

In this paper we determine the wetting phase diagram for three-dimensional systems with short-range forces
assuming the presence of a position-dependent stiffness contribution as recently proposed@M.E. Fisher and
A.J. Jin, Phys. Rev. Lett.69, 792 ~1992!#. We predict a discontinuous transformation of the phase diagram
immediately upon moving beyond the mean-field approximation. However, in contrast to Fisher and Jin we
find that a renormalization group calculation yields fluctuation-induced second-order transitions rather than
fluctuation-induced first-order ones. As a consequence, in all fluctuation regimes we recover the same quali-
tative phase diagram as predicted in the absence of a position-dependent stiffness coefficient. Furthermore,
recent predictions for tricritical wetting behavior remain unaffected by the stiffness contribution.
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I. INTRODUCTION

There has been considerable controversy over re
years concerning wetting behavior in systems with sh
ranged forces at the upper critical dimensiond53 ~see@1–3#
and references therein!. One of the most intriguing predic
tions in this area was made by Fisher and Jin~FJ! @4# who
suggested that mean-field critical wetting transitions may
driven first order due to fluctuation effects. This predicti
stems from an alteration in the interface model used in
fluctuation studies.

In this paper we revisit the FJ model and examine
entire phase diagram, not just the region corresponding
mean-field critical wetting transitions. In this way we o
serve that the most dramatic modification to the phase
gram is not genuinely caused by fluctuation effects but
curs discontinuously as soon as one proceeds beyond
mean-field approximation. This change is due to a switch
sign of the next-to-leading order term in the appropriate
fective interface potential. A detailed linear renormalizati
group study is performed to determine fluctuation effects
the resulting phase diagrams are compared with those fo
from a traditional capillary wave model@5#. Topologically
the two cases are qualitatively the same with the phase
grams simply a mirror image of one another. As a result
predict that one observes first-order wetting transitions
coming fluctuation induced second order, in contrast to
FJ scenario described above. We stress that these differe
do not reflect an error in the FJ analysis. Rather, we ag
with the calculation of FJ but extend their study leading to
reinterpretation of the results.

The remainder of the paper is arranged as follows. In
next section we review the pertinent details of wetting b
havior predicted from the capillary wave model and descr
the FJ model. In Sec. III we perform a detailed analy
of the phase behavior predicted from the FJ model and c
trast this with results of the capillary wave model. Finally,
Sec. IV we discuss the main results and present our con
sions.
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II. BACKGROUND

In what follows we consider a semi-infinite system with
two-dimensional planar surface in the planez50. We as-
sume that a phasea is preferentially adsorbed at the surfac
while a second phaseb is stable in the bulk, i.e., infinitely
far from the surface. The location of the interface betwe
the two phases is denoted byl so that ^ l & represents the
average thickness of the adsorbed layer. The wetting tra
tion corresponds to a divergence of^ l & as an external field
such as the temperature is varied. This surface phase tr
tion may be either first or second order~critical!.

A. Capillary wave model

One of the most profitable methods of studying wetti
behavior is via the introduction of an effective interfa
model which is a functional of the layer thicknessl. Tradi-
tionally this takes the form@6#

HI@ l #5E dyH 1

2
Sab~¹ l !21W~ l ;T, . . . !J , ~1!

and is known as the capillary wave model. Herey denotes
the vector displacement along the fixed surface andSab is
the surface tension of thea-b interface. The interaction be
tween the surface and the interface is described by the b
ing potentialW( l ), the shape of which fully determines th
phase behavior at mean-field~MF! level. In this paper we are
interested only in systems with short-ranged forces for wh
W( l ) is given by the expansion@6,7#

W~ l !5ae2k l1be22k l1ce23k l1•••, ~2!

for l .0, assuming bulk two-phase coexistence. The coe
cient a takes the forma}(T2TW

MF) whereTW
MF is the mean-

field critical wetting temperature, while the coefficientc is
assumed to be a strictly positive constant so that we
truncate the expansion after three terms. Finally,k51/jb is
the inverse bulk correlation length of the wetting (a) phase.
©2002 The American Physical Society07-1
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At the mean-field level one simply ignores fluctuations
the interface and hence the phase diagram follows fr
minimizing Eq. ~2!. To determine the effect of fluctuation
on the other hand, one needs to perform a renormaliza
group ~RG! analysis of the interface model~1!. Application
of an exact linear RG predicts the existence of at least th
distinct regimes parametrized by the dimensionless capil
parameter@6–8#

v5
kBTW

4pSabjb
2

. ~3!

We note here that the limitv→01 is expected to yield MF
predictions since it corresponds to a nonfluctuating interf
with Sab→`. The full linear RG study of the model~1! with
the potential~2! is reported in Ref.@5# and it is appropriate to
recall here the main results which are best summarized
referring to Fig. 1. This is a schematic representation of
renormalized (a-b) phase diagram for three fluctuation r
gimes. In each of the regimes, critical phase boundaries
shown by thick solid lines, first-order phase boundaries
dashed lines, and the locus of tricritical-like behavior by d
ted lines. Focusing first on the critical transition we obse
that in regimes I and II~with v,1/2 and 1/2,v,2, de-
noted the weak and intermediate fluctuation regimes, res
tively @9#! the wetting temperature is ata5ac50 as in the

FIG. 1. Schematic representation of the renormalized (a-b)
phase diagram obtained from the capillary wave model~1! for the
different fluctuation regimes. Critical wetting phase boundaries
shown by thick solid lines, first-order phase boundaries by das
lines, and the locus of tricritical behavior by dotted lines. In ea
case, the tricritical point is indicated by an open circle.~a! corre-
sponds to all regimes withv,1/2, ~b! corresponds to 1/2,v,2,
while ~c! represents the casev.2.
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mean-field case, while in regime III (v.2, strong fluctua-
tion regime! the transition temperature is generally reduc
@8#. The predictions for the critical behavior are strong
nonuniversal such that, for example, the correlation len
parallel to the interface,j i , diverges on approach to the we
ting temperature according toj i;(TW2T)2n i where

n i5H 1/~12v!, v,1/2,

1/~A22Av!2, 1/2,v,2,

`, v.2,

~4!

and where the result forv.2 corresponds to an exponenti
divergence ofj i @8#.

As regards the first-order scenario the RG analysis i
little more involved as in principle four, rather than thre
distinct regimes are found@5#. However, the behavior in the
first two regimes ~corresponding tov,2/9 and 2/9,v
,1/2) is qualitatively identical. In particular, the tricritica
point remains at its MF valueb5bt50 and the first-order
phase boundary for smallb is described by the power law

a;bc, ~5!

where the exponentc is given by@5#

c5H ~223v!/~123v!, v,2/9,

~A22Av!2/~A222Av!2, 2/9,v,1/2.
~6!

For 1/2,v,2 the tricritical point is shifted tob5bt,0
with a critical transition forb.bt and a first-order transition
for b,bt . Note that this point still occurs at the MF wettin
temperaturea50. In this regime the phase boundary is d
scribed bya;(bt2b)c where the exponentc5` indicates
an exponential, rather than algebraic, path. Finally, a fou
regime applies forv.2 with the tricritical point shifted to
bt,0 anda.0.

Tricritical points generally lie in a different universalit
class from the second-order transition and so one exp
different critical exponents. Renormalization group calcu
tions reveal that this is true only forv,1/2. More specifi-
cally, for the tricritical wetting transition, three fluctuatio
regimes are again found but Eq.~4! is replaced by@5,10,11#

n i5H 3/~426v!, v,2/9,

1/~A22Av!2, 2/9,v,2,

`, v.2.

~7!

The boundary of the region in the phase diagram in wh
this tricritical-like behavior will be observed is denoted b
the dotted lines in Fig. 1.

It is appropriate to confirm at this stage that the me
field phase diagram is qualitatively identical to the pha
diagram in the first regime@Fig. 1~a!#. Moreover, quantita-
tively, all the MF results are recovered in the limitv→01.
To understand the effect of fluctuations one should comp
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IS A POSITION-DEPENDENT STIFFNESS RELEVANT . . . PHYSICAL REVIEW E 65 031607
the phase behavior in this limit to the results for stric
positive v. From Fig. 1 it is then clear that the shift of th
tricritical point for v.1/2 means that first-order wettin
transitions can be drivenfluctuation induced second order.

B. Fisher-Jin model

The capillary wave model~1! and ~2! may be justified
phenomenologically; however, a recent study by Fisher
Jin has shown that it does not withstand a more rigor
examination@4,12,13#. In particular, FJ derive an interfac
model from the underlying microscopic Landau-Ginzbu
theory by introducing an appropriate definition of the colle
tive coordinatel and applying a saddle-point approximatio
in the corresponding minimization procedure. In so do
they find a revised model of the form

HI@ l #5E dyH 1

2
S~ l !~¹ l !21WFJ~ l ;T, . . . !J , ~8!

with, most importantly, the presence of a position-depend
stiffness coefficientS( l )5Sab1DS( l ). To leading order
the position-dependent contribution isDS( l )52qk le22k l

1•••. Furthermore, FJ also predict that in addition to t
terms in Eq.~2! there are nonpure exponential contributio
in the expansion for the binding potentialWFJ( l ), although
their coefficients vanish atTW

MF . To highlight the effect of
these modifications on the RG analysis, we recall here s
of the pertinent details of the linear RG scheme.

For the capillary wave model~i.e., in the absence of a
position-dependent stiffness coefficient! Fisher and Huse@8#
showed that the binding potential is renormalized accord
to

W(t)~ l !5
e2t

A4pvt
E

2`

`

dl8W(0)~ l 8!e2( l 2 l 8)2/4vt, ~9!

wheret is the renormalization parameter andW(0)( l ) is the
initial bare potential given~for l .0) by Eq. ~2!. Formally,
one should include a hard wall such thatW is infinite for l
,0 since thea-b interface cannot pass through the wa
However, a potential that diverges cannot be handled b
linearized RG and so instead we settle for the soft-wall
strictionW(0)( l )5w0.0 for l ,0 @14#. In the case of the FJ
model the linear RG analysis is more complicated due t
coupling between the RG flows ofDS (t)( l ) andWFJ

(t)( l ). Sur-
prisingly, the results of the procedure can be written in
simple form. In particular, one finds that the binding pote
tial renormalizes exactly as in the standard case, i.e., acc
ing to Eq.~9!, except with the initial bare potentialW(0)( l )
replaced by the modified expression

W̃(0)~ l !5WFJ
(0)~ l !1

vjb
2L2

2
~12e22t!DS (0)~ l !, ~10!

whereL is the momentum cutoff implicitly assumed withi
the interface models. For larget Eq. ~10! simply amounts to
changingWFJ

(0) by a term proportional toDS (0) and thus the
dominant terms inDS (0)( l ) can compete with terms in th
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initial potential WFJ
(0)( l ). More specifically, withDS of the

form described above, the contribution2qk le22k l becomes
the subdominant one in the modified potential~10!. As a
result, FJ concluded that forq.0 this effect may serve as
destabilizing mechanism for the bare critical transition, o
serving first-order transitions in regions in which the M
analysis predicts critical transitions. However, the analy
was restricted to the case of a fixed positiveb value and thus
their results cannot be conclusive about the net effect of
position-dependent stiffness coefficient on the full (a-b)
phase diagram.

In the next section we carefully reanalyze the FJ mode
understand the influence of this revised subdominant term
the modified potential on the renormalized phase diagram
Fig. 1. Moreover, while neglected in the FJ study, we
incorporate the explicitb dependence of the coefficientq.
Indeed, explicit calculations reveal quite generally thatq is
proportional tob with both coefficients changing sign at th
mean-field tricritical point. In particular,q5v(jbL)2b. Es-
timates by Evans, Hoyle, and Parry@15# for the true bulk
correlation length indicate thatjb

2L2 is of order 1 for rel-
evant temperatures and hence we assumeq'vb for our
study, although our results remain valid forq5hvb with
any constant of proportionalityh.

III. PHASE DIAGRAM FOR THE FISHER-JIN MODEL

From here on we assume that lengths are measure
units ofjb so the modified potential~10! can be expanded a

W̃(0)~ l !5ae2 l1b~12v l !e22l1ce23l1•••. ~11!

Before performing the integration in Eq.~9! associated with
the full RG analysis, it is instructive to first gauge the effe
of the additional term by examining the modified potential
a mean-field-like way for~small! fixed v, i.e., we determine
the phase diagram by minimizing Eq.~11!. The same quali-
tative behavior is then expected in the weak fluctuation
gime of the RG so that this analysis provides helpful insig
into the renormalized phase diagram.

Obviously, in comparison to the standard potential~2!, the
stiffness contribution changes the sign of the next-to-lead
order term; therefore significant modifications in the pha
behavior are anticipated. As depicted in Fig. 2 where
compare the MF phase diagrams corresponding to Eqs~2!
and ~11!, we find that for arbitrarily small positivev the
critical transition for b.0 vanishes and is replaced by
first-order wetting transition. Generally this phase bound
is linear as described by

a;e2(11v)/vvb. ~12!

The presence of the exponential factor indicates that
small v the phase boundary lies extremely close to theb
axis. Formally Eq.~12! is valid in the limit of largeb, but it
appears to be in good agreement with numerical soluti
wheneverb>1. In the limit ofb→01 the phase boundary i
given bya;vb2 ln(1/b). Forb,0 the next-to-leading orde
term in W̃(0)( l ) is positive and a window of critical wetting
7-3
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transitions is found on thea50 axis. The critical and first-
order phase boundaries join smoothly at a tricritical po
located ata5b50. For larger negative values ofb the criti-
cal phase boundary terminates at a critical end point,
location of which is given by

ubCEPu5
c

v
e2(12v)/v, ~13!

where here the exponential factor reveals that the width
the critical region is small for smallv. This critical end point
is also the terminus of a further first-order phase boundar
is crucial to stress at this stage that the presence of both
critical end point and the connected first-order phase bou
ary is purely artificial. Specifically, they originate from th
truncation of the expansion for the binding potential whi
leads to an unphysical, finite potential atl 50. As a result
one can create an unphysical minimum at small finitel ~in
some cases a boundary minimum!. In reality the binding po-
tential should satisfyW( l→01)→` so that such minima
cannot lead to extra phase transitions. The irrelevance of
feature in our model is further confirmed by the observat
that, by increasing the value of the positive coefficientc @and
henceW( l 50)#, the critical region increases in size. Mor
over, as demonstrated below, this artifact is removed enti
by the RG procedure in stronger fluctuation regimes.

From the above discussion we predict a dramatic mod
cation to the phase diagram as soon as one switches o
fluctuations~i.e., as soon as we allow a nonzerov, however
small!. The genuine MF behavior is recovered whenv50
and is, by construction, identical to that found from the ca
illary wave model shown in Fig. 2~a!. Crucially this behavior
is different from that found in the limit ofv→01 embodied
in Fig. 2~b!. Hence we propose that the inclusion of t

FIG. 2. Mean-field (a-b) phase diagrams for~a! the standard
potential ~2!, and ~b! the modified potential~11!. Critical phase
boundaries are given by the thick solid lines, while dashed li
show first-order phase boundaries.
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position-dependent stiffness leads to a discontinuous cha
of the phase diagram immediately upon proceeding bey
mean-field level. We reiterate that this is entirely due to
switch in sign of the next-to-leading order term in the bin
ing potential. The genuine effects of the fluctuations, ho
ever, become apparent only upon performing the appropr
RG analysis and comparing the results to the phase diag
given in Fig. 2~b!. The remainder of this section is devoted
precisely this task.

As discussed by Fisher and Huse@8#, when using the
linearized RG to study wetting phenomena, a matching p
cedure must be employed since there is no nontrivial fix
point representing the wetting transition. In practice, this i
plies that we renormalize to a scalet† at which the curvature
of W(t)( l ) at the minimum is of order 1 and increasing;
this point one may expand the potential around the minim
and use mean-field theory to determine the critical beha
~further details can be found in@2,8,5#!. Within the linear RG
theory one may renormalize each term in the bare poten
individually and simply sum up the results to obtainW(t)( l ).
To this end we note that ifV(0)( l )5e2nl for l .0 and
V(0)( l )50 for l ,0 then, using the method of steepest d
scent, one finds

V(t)~ l !'H e2nl1(21n2v)t, l .2nvt,

1

A4pvt

1

~n2 l /vt !
e2t2 l 2/4vt, l ,2nvt.

~14!

Similarly, if V(0)( l )5 le22l for l .0 and vanishes forl ,0,
the renormalization yields

V(t)~ l !'H ~ l 24vt !e22l 1(214v)t, l .4vt,

1

A4pvt

1

~22 l /vt !2
e2t2 l 2/4vt, l ,4vt,

~15!

while the soft-wall contribution renormalizes t
2vtw0e2t2 l 2/4vt/( lA4pvt) for all l .0 @8,13#. With these
results we immediately identify four distinct regimes asso
ated with l .6vt, 6vt. l .4vt, 4vt. l .2vt, and l
,2vt. However, as shown below, we find that the behav
in the first two regimes is qualitatively identical.

The first regime hasl .6vt which may be identifieda
posteriori with v,2/9, and thus from above the renorma
ized potential reads

W(t)~ l !'ae2 l 1(21v)t1b@12v~ l 24vt !#e22l 1(214v)t

1ce23l 1(219v)t. ~16!

Applying the RG matching procedure results in the pha
diagram depicted in Fig. 3~a!. Note the resemblance to Fig
2~b!. For the critical and tricritical behavior we recover th
standard results as given in Eqs.~4! and~7!, respectively. For
b.0 the wetting transition is always found to be of fir
order. Near the tricritical point, which is ata5b50, the
phase boundary is described by the power law~5! with c

s
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5(223v)/(123v). On the other hand, the asymptotic beha
ior of this phase boundary for largeb reads

a;e2[(12v)/(122v)][(1 1v)/(v)]~bv!(223v)/2(122v),
~17!

which incorporates the result~12! when v is very small.
Note this behavior is quantitatively different from that foun
from the capillary wave model wherea;b(223v)/(123v) for
all b. As in the mean-field approach discussed above, we
an additional first-order phase boundary which starts a
critical end point located at

ubCEPu5
c2(122v)/~223v!

v
e2[(226v)/~223v!][(1 2v)/v] .

~18!

This result, which for smallv recovers Eq.~13!, predicts that
ubCEPu increases upon increasingv, and thus the window of
critical transitions grows. Once again the presence of
critical end point has no physical meaning and its locat
diverges to2` in the limit of c→`.

When 4vt, l ,6vt both the soft-wall restriction and th
last exponential in Eq.~2! contribute Gaussians to the reno
malized binding potential and so we consider

FIG. 3. Schematic representation of the renormalized (a-b)
phase diagram obtained from the Fisher-Jin model~8! for the dif-
ferent fluctuation regimes. Critical wetting phase boundaries
shown by thick solid lines and first-order phase boundaries
dashed lines.~a! corresponds to all regimes withv,1/2, ~b! corre-
sponds to 1/2,v,2, while ~c! represents the casev.2.
03160
-

d
a

is
n

W(t)~ l !'ae2 l 1(21v)t1b@12v~ l 24vt !#e22l 1(214v)t

1
D

At
e2t2 l 2/4vt, ~19!

whereD is a positive constant. We find that this regime
valid for 2/9,v,1/2 and that the phase diagram is quali
tively identical to the result of the previous regime, i.e., t
phase diagram shown in Fig. 3~a!. Quantitatively, some mi-
nor changes are predicted. For example, near the tricrit
point, which remains at the origin, the first-order pha
boundary behaves again asa;bc with in this casec5(A2
2Av)2/(A222Av)2, while for largeb the result~17! still
applies. We further observe that the minimum at finitel near
the critical end point tends to a boundary minimum f
which the standard matching technique of the RG analys
not suitable. From Eq.~18! and the predictions in the nex
regime~see below! we anticipate, however, that the critica
end point diverges to2` when v→1/22, thereby com-
pletely removing this unphysical artifact.

A third regime is given by 2vt, l ,4vt which is found
to correspond to 1/2,v,2. In this case the renormalize
potential is given by

W(t)~ l !'ae2 l 1(21v)t1
D~ l /2vt !

A4pvt
e2t2 l 2/4vt, ~20!

where

D~x!5
w0

x
1

b

22x S 12
v

22xD1
c

32x
. ~21!

Interestingly, the potential is identical in form to the on
found for the capillary wave model in the corresponding
gime, with only a small modification in the definition o
D(x) @5#. As a consequence, we find a phase diagram tha
qualitatively the same as the one obtained without
position-dependent stiffness coefficient; however, the t
phase diagrams are mirror images of one another, as ca
seen from comparing Figs. 1~b! and 3~b!. We discuss this
result further in the next section. We additionally note th
the tricritical point is shifted tobt.0. The location of this
point may be determined by settinga50 in Eq. ~20! and
looking for a solution ofW50 for finite l. This yields

bt~v!5
~22A2/v!2

v1A2/v22
Fw0Av/21

c

32A2/v
G . ~22!

For the critical and tricritical behavior we again recover t
earlier predictions given in Eqs.~4! and ~7!, while the first-
order boundary near the tricritical point follows an expone
tial path, just as in the case of the capillary wave model.

For the fourth regime, which applies forv.2, similar
observations are found, resulting in a phase diagram tha
topologically the same as in the standard model. In parti
lar, at leading order all critical behavior and phase bou
aries are identical to those found from the capillary wa
model provided one incorporates the inversionb→2b.
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F. CLARYSSE AND C. J. BOULTER PHYSICAL REVIEW E65 031607
Our final comments in this section relate to the locus
tricritical behavior. This can typically be found from compa
ing the magnitude of the appropriate terms in the renorm
ized potential@5,13#. In so doing, we deduce that the predi
tions from the capillary wave model are not affected by
inclusion of a position-dependent stiffness coefficient. A
result, the region in which tricritical behavior is expected
be observed remains as represented by the dotted line
Fig. 1, provided we again allow for the inversionb→2b.

IV. DISCUSSION AND CONCLUSIONS

In this paper we have determined the full (a-b) phase
diagram for the Fisher-Jin interface model, and compa
these results with the corresponding ones from a traditio
capillary wave model. The purpose of this analysis is to
swer the question posed in the title: ‘‘Is a position-depend
stiffness relevant for the wetting phase diagram?’’ A dire
comparison of the two phase diagrams~Fig. 1 and Fig. 3!
certainly suggests a large change in the phase beha
However, we argue that qualitatively the phase behavio
the same in the two cases so that for practical purposes
answer to the question is ‘‘no.’’

More specifically, the main effect of the position
dependent stiffness contribution is to reverse the sign of
next-to-leading order term in the appropriate binding pot
tial. As a consequence the phase diagram is inverted wib
→2b. Bearing this in mind the two figures are essentia
the same with differences in thev,1/2 regimes~the critical
end point and additional first-order phase boundary! simply
being artifacts of truncating the binding potential as d
cussed in Sec. III. These observations are particularly
evant if one wishes to compare the phase diagrams
those found in experimental systems. For example, re
experimental observations of critical and first-order wett
in alkane-methanol mixtures are believed to be in the univ
sality class of short-range wetting@16#. For long-chain al-
kanes first-order wetting is found while for shorter-chain
kanes a critical wetting transition has been reported. Thus
may tentatively identifya with the temperature andb with
the alkane chain length~with the sign changing as the leng
is decreased!; however, it makes no difference which of th
two theoretical phase diagrams one compares with s
their topology and the associated critical behaviors are id
tical. The only decision is whether to identify long cha
lengths with positive or negativeb. This freedom of choice is
available becauseb is essentially a phenomenological para
eter within the effective Hamiltonian theory. In practice w
might hope to deduce the sign ofb for a given chain length
on physical grounds starting from a more microscopic the
and integrating out degrees of freedom. If this is possible
results presented in this paper would provide a mechan
for determining whether the capillary wave or FJ mod
has the stronger physical basis. For example, for the situa
described above, ifb.0 for long-chain alkanes then th
FJ model is preferred, whereas ifb,0 for long-chain al-
kanes then the capillary wave model would appear to be
better one. However, we are wary of attempting to ma
such a prediction at this stage since there is strong evide
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that the reported wetting transitions will reveal only MF-lik
behavior ~where the two theories are identical! due to
the inability to perform experiments sufficiently close to t
wetting temperature@16#. Thus at present we feel cautio
should be exercised in comparing the theory with expe
ments, but hope further progress can be made in this are
the near future.

Returning to the comparison of the two theories we co
ment that, at a quantitative level, there are some differen
between the two phase diagrams for the interface mo
studied; however, these are apparent only forv,1/2. Most
notably the form of the first-order phase boundary away fr
the tricritical point is different in the two cases. Thus, f
example in the limit ofv→01 the phase boundary is qua
dratic for the capillary wave model but linear for the Fishe
Jin model. Hence at this level we can argue that the posit
dependent stiffnessis relevant for the wetting phase diagram

One final issue that we wish to address is the effect
fluctuations upon the phase diagrams. The original FJ an
sis predicted a stiffness instability mechanism with critic
wetting transitions being driven fluctuation induced first o
der @4#. However, we have argued that in contrast fluctu
tions tend to drive the first-order wetting transition seco
order. For example comparison of Figs. 3~a! and 3~b! shows
such a change related to the shifting of the tricritical point
v is increased. This is in complete accord with our findin
from the capillary wave model discussed in Sec. II A. Th
one may ask where is the stiffness instability mechanism
in our results. The answer is that FJ considered only
region of the phase diagram withb.0, and compared the
simple mean-field phase diagram in the absence of the s
ness contribution@Fig. 2~a!# with the renormalized phase dia
gram given in Fig. 3. Under such a comparison one ind
sees the critical wetting transition being largely replaced b
first-order transition. However, this transformation occu
immediately one allows the stiffness term to contribute~i.e.,
as one goes fromv50 to v501) and as such is not really
a fluctuation effect.

In conclusion we summarize our main results. The eff
of including a position-dependent stiffness coefficient
made up of two distinct contributions. First, upon noting th
the coefficient of this term is proportional to the next-t
leading order term in the bare binding potential, but oppos
in sign, one finds a discontinuous change in the phase
gram immediately upon moving beyond the MF level. Th
discontinuity is simply an inversion of the phase diagra
Secondly, the presence of fluctuations tends to drive the fi
order wetting transition critical. Finally, for practical pu
poses we note that the qualitative features of the phase
gram are completely unaffected by the inclusion of t
stiffness contribution, as are recent predictions for tricritic
wetting @5#.
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