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Is a position-dependent stiffness relevant for the wetting phase diagram?
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In this paper we determine the wetting phase diagram for three-dimensional systems with short-range forces
assuming the presence of a position-dependent stiffness contribution as recently pfdpaseisher and
A.J. Jin, Phys. Rev. Let9, 792 (1992]. We predict a discontinuous transformation of the phase diagram
immediately upon moving beyond the mean-field approximation. However, in contrast to Fisher and Jin we
find that a renormalization group calculation yields fluctuation-induced second-order transitions rather than
fluctuation-induced first-order ones. As a consequence, in all fluctuation regimes we recover the same quali-
tative phase diagram as predicted in the absence of a position-dependent stiffness coefficient. Furthermore,
recent predictions for tricritical wetting behavior remain unaffected by the stiffness contribution.
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I. INTRODUCTION Il. BACKGROUND
There has .been f[:tpnsugerhablg c.ontrov;—:‘rsy Othr rgcetnt In what follows we consider a semi-infinite system with a
yearsdcfoncernlr:gt]hwe ng (f"t. a\?g_r N sys %ms Wll ; O™wo-dimensional planar surface in the plape 0. We as-
ranged forces at the upper critical dimenstba (_see[ ~ ]_ sume that a phase is preferentially adsorbed at the surface,
and references therginOne of the most intriguing predic-

. ) . i while a second phasg is stable in the bulk, i.e., infinitely
tions in this area was made by Fisher and (i) [4] Who ¢4 from the surface. The location of the interface between

suggested that mean-field critical wetting transitions may bgne two phases is denoted Iyso that(l) represents the

driven first order due to fluctuation effects. This predictiongyerage thickness of the adsorbed layer. The wetting transi-

stems from an alteration in the interface model used in thgion corresponds to a divergence @ as an external field

fluctuation studies. such as the temperature is varied. This surface phase transi-
In this paper we revisit the FJ model and examine the&jon may be either first or second orderitical).

entire phase diagram, not just the region corresponding to

mean-field critical wetting transitions. In this way we ob-
serve that the most dramatic modification to the phase dia- ) ) )
gram is not genuinely caused by fluctuation effects but oc- ON€ Of the most profitable methods of studying wetting
curs discontinuously as soon as one proceeds beyond tpghavior is via the introduction of an effective interface
mean-field approximation. This change is due to a switch in. odel Wh.'Ch is & functional of the layer thicknelssTradi-
sign of the next-to-leading order term in the appropriate ef_|onally this takes the fornie]

fective interface potential. A detailed linear renormalization 1

group study is performed to determine fluctuation effects and H[1]= f dy(iﬁa,g(Vl)erWU T 1)

the resulting phase diagrams are compared with those found

from a iraditional capil!ary wave modeb]. '_I'opologically .and is known as the capillary wave model. Hgrelenotes
the two cases are qualitatively the same with the phase d'?ﬁe vector displacement along the fixed surface 3ing is

grams simply a mirror image of one another. As a result Wee g;rface tension of the-3 interface. The interaction be-
predict that one observes first-order wetting transitions begyeen the surface and the interface is described by the bind-
coming fluctuation induced second order, in contrast to th@ng potentialW(1), the shape of which fully determines the
FJ scenario described above. We stress that these differenc@q;ase behavior at mean-figllF) level. In this paper we are

do not reflect an error in the FJ analysis. Rather, we agregyterested only in systems with short-ranged forces for which
with the calculation of FJ but extend their study leading to ay(1) is given by the expansiof6,7]

reinterpretation of the results.

The remainder of the paper is arranged as follows. In the W(l)=ae “'+be 2 +ce 3 +. .., 2)
next section we review the pertinent details of wetting be-
havior predicted from the capillary wave model and describéor | >0, assuming bulk two-phase coexistence. The coeffi-
the FJ model. In Sec. lll we perform a detailed analysiscienta takes the forrraoc(T—T\')/lvF) whereT\“,’\',F is the mean-
of the phase behavior predicted from the FJ model and corfield critical wetting temperature, while the coefficienis
trast this with results of the capillary wave model. Finally, in assumed to be a strictly positive constant so that we can
Sec. IV we discuss the main results and present our concluruncate the expansion after three terms. Finadly,1/&, is
sions. the inverse bulk correlation length of the wetting)(phase.

A. Capillary wave model
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a Y mean-field case, while in regime Illw(>2, strong fluctua-

\_ UNBOUND tion regime the transition temperature is generally reduced
N [8]. The predictions for the critical behavior are strongly

(@) \ B nonuniversal such that, for example, the correlation length
BO parallel to the interface;, diverges on approach to the wet-

/ + BOUND . . A

ting temperature according &~ (Tw—T) "l where

b

(b)

UNiOUND

o)

1(1l-w),
=1 V(2= Vw)?,

w<l1/2,
12<w<2,
w>2,

4

BOUND and where the result fan>2 corresponds to an exponential
divergence of [8].

b As regards the first-order scenario the RG analysis is a
little more involved as in principle four, rather than three,
distinct regimes are founib]. However, the behavior in the
first two regimes(corresponding tow<2/9 and 2/¥Xw

() 0\ <1/2) is qualitatively identical. In particular, the tricritical

\ point remains at its MF valub=b;=0 and the first-order
y BOUND

phase boundary for smédilis described by the power law
b a~b?, ®)

FIG. 1. Schematic representation of the renormalizaeb)
phase diagram obtained from the capillary wave mddgfor the ~ where the exponent is given by[5]
different fluctuation regimes. Critical wetting phase boundaries are
shown by thick solid lines, first-order phase boundaries by dashed
lines, and the locus of tricritical behavior by dotted lines. In each
case, the ftricritical point is indicated by an open cir¢®. corre-
sponds to all regimes with<<1/2, (b) corresponds to 1Rw<2,
while (c) represents the case>2.

\ UNiOUND

(2—3w)/(1-3w), w<2/9,
v= (V2—w)2(V2—2{w)?, 2/9<w<1/2. ©

For 1/2<w<?2 the tricritical point is shifted tdo=b,<0

] ) _ . with a critical transition fotb>b, and a first-order transition
At the mean-field level one simply ignores fluctuations offor h<p, . Note that this point still occurs at the MF wetting

the interface and hence the phase diagram follows froMemperaturea=0. In this regime the phase boundary is de-

minimizing Eq.(2). To determine the effect of fluctuations, gcriped bya~ (b,—b)" where the exponent=c indicates

on the other hand, one needs to perform a renormalizatiogn exponential, rather than algebraic, path. Finally, a fourth
group (RG) analysis of the interface model). Application  yegime applies fow™>2 with the tricritical point shifted to
of an exact linear RG predicts the existence of at least thre5t<o anda>0.

distinct regimes parametrized by the dimensionless capillary  Tyicritical points generally lie in a different universality

parametef6—8] class from the second-order transition and so one expects
different critical exponents. Renormalization group calcula-
~ keTw 3 tions reveal that this is true only fab<<1/2. More specifi-
@= 4, gtz)' ) cally, for the tricritical wetting transition, three fluctuation
“p regimes are again found but E@) is replaced by5,10,1]

We note here that the limib—0" is expected to yield MF

predictions since it corresponds to a nonfluctuating interface 3(4—6w), 0<2/9,

with %, s;— . The full linear RG study of the modél) with 12— 2 2/9< <2

the potential2) is reported in Refl5] and it is appropriate to Yl (\/— \/;) ’ “me @
recall here the main results which are best summarized by ©, w>2.

referring to Fig. 1. This is a schematic representation of the

renormalized &-b) phase diagram for three fluctuation re- The boundary of the region in the phase diagram in which
gimes. In each of the regimes, critical phase boundaries aithis tricritical-like behavior will be observed is denoted by
shown by thick solid lines, first-order phase boundaries bythe dotted lines in Fig. 1.

dashed lines, and the locus of tricritical-like behavior by dot- It is appropriate to confirm at this stage that the mean-
ted lines. Focusing first on the critical transition we observefield phase diagram is qualitatively identical to the phase
that in regimes | and llwith w<<1/2 and 1/Zw<2, de- diagram in the first regimgFig. 1(@]. Moreover, quantita-
noted the weak and intermediate fluctuation regimes, respetively, all the MF results are recovered in the linit—-0".
tively [9]) the wetting temperature is at=a.=0 as in the To understand the effect of fluctuations one should compare
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the phase behavior in this limit to the results for strictly jnitial potential W

positive w. From Fig. 1 it is then clear that the shift of the
tricritical point for ®>1/2 means that first-order wetting
transitions can be drivefiuctuation induced second order

B. Fisher-Jin model

The capillary wave mode{l) and (2) may be justified

phenomenologically; however, a recent study by Fisher an
Jin has shown that it does not withstand a more rigorou

examination[4,12,13. In particular, FJ derive an interface
model from the underlying microscopic Landau-Ginzbur

theory by introducing an appropriate definition of the collec-
tive coordinatd and applying a saddle-point approximation
in the corresponding minimization procedure. In so doingF

they find a revised model of the form

1
H|[I]=f dy[zE(l)(Vl)z-FW,:J(I;T, o) (8

PHYSICAL REVIEW E 65 031607

©O)(1). More specifically, withAS, of the

form described above, the contributiongxle 2! becomes
the subdominant one in the modified potentia0). As a
result, FJ concluded that fay>0 this effect may serve as a
destabilizing mechanism for the bare critical transition, ob-
serving first-order transitions in regions in which the MF
analysis predicts critical transitions. However, the analysis

as restricted to the case of a fixed positivealue and thus

eir results cannot be conclusive about the net effect of the
position-dependent stiffness coefficient on the full-k)

gphas;e diagram.

In the next section we carefully reanalyze the FJ model to
understand the influence of this revised subdominant term in
the modified potential on the renormalized phase diagrams of
ig. 1. Moreover, while neglected in the FJ study, we do
incorporate the explicib dependence of the coefficient
Indeed, explicit calculations reveal quite generally thas
proportional tob with both coefficients changing sign at the
mean-field tricritical point. In particulag= w(&,A)%b. Es-

with, most importantly, the presence of a position-dependeriimates by Evans, Hoyle, and Parfy5] for the true bulk

stiffness coefficien ()= ,5+A2(l). To leading order
the position-dependent contribution 463 (1)= —q«le 2~

correlation length indicate thaA? is of order 1 for rel-
evant temperatures and hence we assugmavb for our

+---. Furthermore, FJ also predict that in addition to thestudy, although our results remain valid fqr= 7wb with
terms in Eq.(2) there are nonpure exponential contributionsany constant of proportionality.

in the expansion for the binding potentdl-{I1), although
their coefficients vanish afyy . To highlight the effect of

Ill. PHASE DIAGRAM FOR THE FISHER-JIN MODEL

these modifications on the RG analysis, we recall here some

of the pertinent details of the linear RG scheme.
For the capillary wave modsdi.e., in the absence of a
position-dependent stiffness coefficipRisher and Husgs]

showed that the binding potential is renormalized according

to

2t

o]

W(t)(|): d|'W(0)(|/)e—(l—l')2/4wt,

©)

drwt) —=

wheret is the renormalization parameter and®)(1) is the
initial bare potential giverifor |>0) by Eq.(2). Formally,
one should include a hard wall such thatis infinite for |
<0 since thea-B interface cannot pass through the wall.

From here on we assume that lengths are measured in
units of &, so the modified potentidlLl0) can be expanded as
WO()=ae '"+b(1-w)e Z+ce ¥ +.... (11
Before performing the integration in E¢Q) associated with
the full RG analysis, it is instructive to first gauge the effect
of the additional term by examining the modified potential in
a mean-field-like way fofsmal) fixed w, i.e., we determine
the phase diagram by minimizing E@.1). The same quali-
tative behavior is then expected in the weak fluctuation re-
gime of the RG so that this analysis provides helpful insight
into the renormalized phase diagram.

Obviously, in comparison to the standard poter(i2a) the

However, a potential that diverges cannot be handled by gtiffness contribution changes the sign of the next-to-leading
linearized RG and so instead we settle for the soft-wall regrder term; therefore significant modifications in the phase
striction W(®)(1) =w,>0 for <0 [14]. In the case of the FJ pehavior are anticipated. As depicted in Fig. 2 where we
model the linear RG anaIySiS is more Complicated due to @Ompare the MF phase diagrams Corresponding to ms_
coupling between the RG flows afs (1) andW{)(1). Sur-  and (11), we find that for arbitrarily small positive» the
prisingly, the results of the procedure can be written in &critical transition forb>0 vanishes and is replaced by a

simple form. In particular, one finds that the binding poten-first-order wetting transition. Generally this phase boundary

tial renormalizes exactly as in the standard case, i.e., accorgs |inear as described by
ing to Eq.(9), except with the initial bare potenti&/(®)(l)
replaced by the modified expression

a~e (rologyp. (12)

272

~ wéfA The presence of the exponential factor indicates that for
FO) =W+ 2~ (1-e 2)A3O1),  (10) i )

small  the phase boundary lies extremely close to the
axis. Formally Eq(12) is valid in the limit of largeb, but it
appears to be in good agreement with numerical solutions
whenevetb=1. In the limit ofb— 0+ the phase boundary is
given bya~ wb?In(1/b). Forb<O0 the next-to-leading order

term in W()(1) is positive and a window of critical wetting

where A is the momentum cutoff implicitly assumed within
the interface models. For largeéEq. (10) simply amounts to
changingW!9 by a term proportional ta3(®) and thus the
dominant terms im3()(l) can compete with terms in the
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position-dependent stiffness leads to a discontinuous change
of the phase diagram immediately upon proceeding beyond
mean-field level. We reiterate that this is entirely due to a
switch in sign of the next-to-leading order term in the bind-
ing potential. The genuine effects of the fluctuations, how-
ever, become apparent only upon performing the appropriate
RG analysis and comparing the results to the phase diagram

given in Fig. Zb). The remainder of this section is devoted to

precisely this task.

b As discussed by Fisher and Huf&], when using the

a \ linearized RG to study wetting phenomena, a matching pro-

\ cedure must be employed since there is no nontrivial fixed
\ point representing the wetting transition. In practice, this im-

Nl e plies that we renormalize to a scaleat which the curvature

(b) P Trop of W(1) at the minimum is of order 1 and increasing; at

this point one may expand the potential around the minimum

BOUND and use mean-field theory to determine the critical behavior

(further details can be found [2,8,5]). Within the linear RG

theory one may renormalize each term in the bare potential

individually and simply sum up the results to obt&if9(l).

FIG. 2. Mean-field &-b) phase diagrams fof@) the standard TO this end we note that it/(®)(1)=e™" for 1>0 and
potential (2), and (b) the modified potential11). Critical phase V(®(1)=0 for <0 then, using the method of steepest de-
boundaries are given by the thick solid lines, while dashed linescent, one finds
show first-order phase boundaries.

e—n|+(2+n2w)t, |>2not,
transitions is found on tha=0 axis. The critical and first- ®
. .. Lo . V() ~ 1 1 5
order phase boundaries join smoothly at a tricritical point e2t—1%40t | <2nwt.
located aa=b=0. For larger negative values bfthe criti- VAot (= ot) '
cal phase boundary terminates at a critical end point, the (14
location of which is given by

Similarly, if V©©(l)=le~?' for | >0 and vanishes for<0,

c the renormalization yields
|bogd = —e 7V, (13)
@ (I —4pt)e 2+ @+t |>4ot,
where here the exponential factor reveals that the width of v (])~ 1 1

2t7|2/4w’[, |<4(1)t,

the critical region is small for smadb. This critical end point
is also the terminus of a further first-order phase boundary. It
is crucial to stress at this stage that the presence of both the
critic;al end poin'g gr_ld the conpected first-or_dgr phase boundynile the soft-wall  contribution
ary is purely artificial. Specifically, they originate from the
truncation of the expansion for the binding potential which
leads to an unphysical, finite potential lat0. As a result
one can create an unphysical minimum at small fihite
some cases a boundary minimurin reality the binding po-
tential should satisfiyW(l —0+)— so that such minima ; : . . .
cannot lead to extra phase transitions. The irrelevance of this The_ fl_rst_reglme ha$>6wt which may be identifiecy
feature in our model is further confirmed by the observatiorpoSterlorl W.'th @<2/9, and thus from above the renormal-
that, by increasing the value of the positive coefficiefend ized potential reads
henceW(l=0)], the critical region increases in size. More- (O () A o=+ (2+ o)t o —21+(2+4w)t
over, as demonstrated below, this artifact is removed entirely Wh()~ae Thl1-w(l—40t)]e
by the RG procedure in stronger fluctuation regimes. +ce 3F(2H90) (16)
From the above discussion we predict a dramatic modifi-
cation to the phase diagram as soon as one switches on tgplying the RG matching procedure results in the phase
fluctuations(i.e., as soon as we allow a nonzesphowever diagram depicted in Fig.(8). Note the resemblance to Fig.
smal). The genuine MF behavior is recovered wher 0 2(b). For the critical and tricritical behavior we recover the
and is, by construction, identical to that found from the cap-standard results as given in E¢$) and(7), respectively. For
illary wave model shown in Fig.(2). Crucially this behavior b>0 the wetting transition is always found to be of first
is different from that found in the limit ofo— 0+ embodied order. Near the tricritical point, which is &=b=0, the
in Fig. 2b). Hence we propose that the inclusion of the phase boundary is described by the power [@vwith

e
Vamot (2—1/wt)?

(19

renormalizes to
20twee? 4t (| JAmwt) for all 1>0 [8,13. With these
results we immediately identify four distinct regimes associ-
ated with |>6wt, 6wt>|>4wt, 4wt>1>2wt, and |
<2wt. However, as shown below, we find that the behavior
in the first two regimes is qualitatively identical.
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all P WO ()~ae T4 b1 — w(] —4wt)]e 2 T (T4t
‘\‘ UNBOUND, .
Ne=” — p2t—1%40t
(a) JCEP e + \/{e ' (19)
BOUND
whereD is a positive constant. We find that this regime is
b valid for 2/9<w<1/2 and that the phase diagram is qualita-
tively identical to the result of the previous regime, i.e., the
a L phase diagram shown in Fig(é8. Quantitatively, some mi-
UNBPUND / nor changes are predicted. For example, near the tricritical
(b) . e point, which remains at the origin, the first-order phase
TCP boundary behaves again as-b? with in this casey= (2
BOUND —Jw)?(\2—2\Jw)?, while for largeb the result(17) still
applies. We further observe that the minimum at fihiteear
b the critical end point tends to a boundary minimum for
; which the standard matching technique of the RG analysis is
a / not suitable. From Eq(18) and the predictions in the next
UNBPUND  / regime (see below we anticipate, however, that the critical
(c) —O1CP end point diverges to-~ when w—1/2—, thereby com-
pletely removing this unphysical artifact.
AUND A third regime is given by at<|<4wt which is found
to correspond to 1R w<2. In this case the renormalized
b potential is given by

FIG. 3. Schematic representation of the renormalizaeb)
phase diagram obtained from the Fisher-Jin md@gfor the dif-
ferent fluctuation regimes. Critical wetting phase boundaries are
shown by thick solid lines and first-order phase boundaries by
dashed lines(a) corresponds to all regimes with<<1/2, (b) corre-  \yhere
sponds to 1/Z w<2, while (c) represents the case>2.

D(1/2wt)
—€

WO (|)~ae ' +@+o)ty 2t—|2/4wt, (20)

4wt

w

2—X

¢ 21
+3—x' (1)

W b
=(2—3w)/(1—3w). On the other hand, the asymptotic behav- D)= X * 2—X ( !
ior of this phase boundary for lardereads

Interestingly, the potential is identical in form to the one

found for the capillary wave model in the corresponding re-

gime, with only a small modification in the definition of
(17 D(x) [5]. As a consequence, we find a phase diagram that is
qualitatively the same as the one obtained without the
position-dependent stiffness coefficient; however, the two
phase diagrams are mirror images of one another, as can be
seen from comparing Figs.(d) and 3b). We discuss this

a~ e [(1-0)/(1-20)][(1 +0)I(@)] (b ) (2~ 30)/2(1-20)

which incorporates the resu{l2) when w is very small.
Note this behavior is quantitatively different from that found

i (2-3w)/(1-3w) . . o\
frl(l)rl? the caﬁnlary wa;_/ek;nodel Whﬁ?;.wb dab for qnesult further in the next section. We additionally note that
all b. As in the mean-field approach discussed above, we 'nﬂwe tricritical point is shifted td,>0. The location of this

an additional first-order phase boundary which starts at %oint may be determined by settirg=0 in Eq. (20) and
critical end point located at looking for a solution ofW=0 for finite |. This yields

2(1-20)/(2—30) (2—2lw)? c

c _

_ ~[(2-6w)/(2—3w)][(1 - w)/w] bi((w)=———| Wyyw/2+ ——|. 22

|beed = - e : )= 2| " s e %
(18

For the critical and tricritical behavior we again recover the

earlier predictions given in Eq$4) and (7), while the first-
This result, which for smalb recovers Eq(13), predicts that  order boundary near the tricritical point follows an exponen-
|bced increases upon increasing and thus the window of tial path, just as in the case of the capillary wave model.
critical transitions grows. Once again the presence of this For the fourth regime, which applies fas>2, similar
critical end point has no physical meaning and its locationobservations are found, resulting in a phase diagram that is
diverges to—< in the limit of c—oe. topologically the same as in the standard model. In particu-

When 4ot <l <6wt both the soft-wall restriction and the lar, at leading order all critical behavior and phase bound-

last exponential in Eq.2) contribute Gaussians to the renor- aries are identical to those found from the capillary wave
malized binding potential and so we consider model provided one incorporates the inversiba —b.
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Our final comments in this section relate to the locus ofthat the reported wetting transitions will reveal only MF-like
tricritical behavior. This can typically be found from compar- behavior (where the two theories are identicatiue to
ing the magnitude of the appropriate terms in the renormalthe inability to perform experiments sufficiently close to the
ized potentia[5,13]. In so doing, we deduce that the predic- wetting temperatur¢16]. Thus at present we feel caution
tions from the capillary wave model are not affected by theshould be exercised in comparing the theory with experi-
inclusion of a position-dependent stiffness coefficient. As aments, but hope further progress can be made in this area in
result, the region in which tricritical behavior is expected tothe near future.
be observed remains as represented by the dotted lines in Returning to the comparison of the two theories we com-
Fig. 1, provided we again allow for the inversibr- —b. ment that, at a quantitative level, there are some differences
between the two phase diagrams for the interface models
studied; however, these are apparent onlyder 1/2. Most
IV. DISCUSSION AND CONCLUSIONS notably the form of the first-order phase boundary away from

In this paper we have determined the fuli-b) phase the tricritical point is different in the two cases. Thus, for
diagram for the Fisher-Jin interface model, and compare@*ample in the limit ofwo—0+ the phase boundary is qua-
these results with the corresponding ones from a traditiondlratic for the capillary wave model but linear for the Fisher-
capillary wave model. The purpose of this analysis is to ansJin model. Hence at this level we can argue that the_ position-
swer the question posed in the title: “Is a position-dependenélependent stiffneds relevant for the wetting phase diagram.
stiffness relevant for the wetting phase diagram?” A direct One final issue that we wish to address is the effect of
comparison of the two phase diagrarifég. 1 and Fig. 3  fluctuations upon the phase diagrams. The original FJ analy-
certainly suggests a large change in the phase behavidiS pred|cted.§1 stlffngss m;tablhty mec_han.|sm with .cr|t|cal
However, we argue that qualitatively the phase behavior i¥vetting transitions being driven fluctuation induced first or-

the same in the two cases so that for practical purposes ttfier [4]. However, we have argued that in contrast fluctua-
answer to the question is “no.” tions tend to drive the first-order wetting transition second

More specifically, the main effect of the position- order. For example comparison of FigsaBand 3b) shows
dependent stiffness contribution is to reverse the sign of théuch a change related to the shifting of the tricritical point as
next-to-leading order term in the appropriate binding poten is increased. This is in complete accord with our findings
tial. As a consequence the phase diagram is inverted twith from the capillary wave model discussed in Sec. Il A. Thus
— —b. Bearing this in mind the two figures are essentiallyOne may ask where is the stiffness instability mechanism is
the same with differences in the< 1/2 regimegthe critical N our results. The answer is that FJ considered only the
end point and additional first-order phase boungaigply ~ region of the phase diagram with>0, and compared the
being artifacts of truncating the binding potential as dis-Simple mean-field phase diagram in the absence of the stiff-
cussed in Sec. Ill. These observations are particularly rel0€ss contributiofiFig. 2(a)] with the renormalized phase dia-
evant if one wishes to compare the phase diagrams witgfam given in Fig. 3. Under such a comparison one indeed
those found in experimental systems. For example, recer§i€es the critical wetting transition being largely replaced by a
experimental observations of critical and first-order wettingfirst-order transition. However, this transformation occurs
in alkane-methanol mixtures are believed to be in the univerimmediately one allows the stiffness term to contriblite.,
sality class of short-range wettirfg6]. For long-chain al- s one goes from=0 to w=0+) and as such is not really
kanes first-order wetting is found while for shorter-chain al-a fluctuation effect.
kanes a critical wetting transition has been reported. Thus we [N conclusion we summarize our main results. The effect
may tentatively identifya with the temperature and with of including a position-dependent stiffness coefficient is
the alkane chain lengttwith the sign changing as the length made up of two distinct contributions. First, upon noting that
is decreased however, it makes no difference which of the the coefficient of this term is proportional to the next-to-
two theoretical phase diagrams one compares with sincading order term in the bare binding potential, but opposite
their topology and the associated critical behaviors are iderin sign, one finds a discontinuous change in the phase dia-
tical. The only decision is whether to identify long chain 9ram immediately upon moving beyond the MF level. This
lengths with positive or negative This freedom of choice is  discontinuity is simply an inversion of the phase diagram.
available becauseis essentially a phenomenological param-Secondly, the presence of fluctuations tends to drive the first-
eter within the effective Hamiltonian theory. In practice we order wetting transition critical. Finally, for practical pur-
might hope to deduce the sign bffor a given chain length POSes we note that the qualitative features of the phase dia-
on physical grounds starting from a more microscopic theon@gram are completely unaffected by the inclusion of the
and integrating out degrees of freedom. If this is possible thé:tiffness contribution, as are recent predictions for tricritical
results presented in this paper would provide a mechanisiyetting [5].
for determining whether the capillary wave or FJ model

has the stronger physical basis. For example, for the situation
described above, ib>0 for long-chain alkanes then the ACKNOWLEDGMENTS
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kanes then the capillary wave model would appear to be theussions over a number of years. This research was sup-
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such a prediction at this stage since there is strong evidendeoundation(NUF-NAL 99).
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